
MLX90640 32x24 IR array
Driver

Page 1 of 15

REVISION 1 - MARCH 23, 2018

Contents

1. Overview ... 2

2. I2C driver ... 2

2.1. MLX90640_I2C_Driver.cpp ... 2

2.2. MLX90640_SWI2C_Driver.cpp ... 2

2.3. I2C driver functions ... 3

2.3.1. void MLX90640_I2CInit(void) ... 3

2.3.2. void MLX90640_I2CFreqSet(int freq) ... 4

2.3.3. int MLX90640_I2CRead(uint8_t slaveAddr, unsigned int startAddress, unsigned int
nWordsRead, uint16_t *data) ... 4

2.3.4. int I2CWriteMLX90640(uint8_t slaveAddr, unsigned int writeAddress, uint16_t data) 5

3. MLX90640 API ... 6

3.1. MLX90640 API functions ... 6

3.1.1. int MLX90640_SetResolution(uint8_t slaveAddr, uint8_t resolution)....................................... 6

3.1.2. int MLX90640_GetCurResolution (uint8_t slaveAddr) ... 6

3.1.3. int MLX90640_SetRefreshRate (uint8_t slaveAddr, uint8_t resolution) 7

3.1.4. int MLX90640_GetRefreshRate (uint8_t slaveAddr) .. 7

3.1.5. int MLX90640_GetSubPageNumber (uint16_t *frameData) ... 8

3.1.6. int MLX90640_SetInterleavedMode (uint8_t slaveAddr) .. 8

3.1.7. int MLX90640_SetChessMode (uint8_t slaveAddr) .. 9

3.1.8. int MLX90640_GetCurMode (uint8_t slaveAddr) ... 9

3.1.9. int MLX90640_DumpEE(uint8_t slaveAddr, uint16_t *eeData) .. 9

3.1.10. int ExtractParameters(uint16_t * eeData, paramsMLX90640 *mlx90640) 10

3.1.11. int MLX90640_GetFrameData(uint8_t slaveAddr, uint16_t *frameData) 10

3.1.12. float MLX90640_GetVdd(uint16_t *frameData, paramsMLX90640 *params) 11

3.1.13. float MLX90640_GetTa(uint16_t *frameData, paramsMLX90640 *params) 12

3.1.14. void MLX90640_CalculateTo(uint16_t *frameData, paramsMLX90640 *params, float
emissivity, float tr, float *result) ... 12

3.1.15. void MLX90640_GetImage(uint16_t *frameData, paramsMLX90640 *params, float
*result) – UNDER DEVELOPMENT... 14

4. Revision history table .. 15

MLX90640 32x24 IR array
Driver

Page 2 of 15

REVISION 1 - MARCH 23, 2018

1. Overview

In order to use the MLX90640 driver there are 4 files that should be included in the C project:

 MLX90640_I2C_Driver.h – header file containing the definitions of the I2C related functions

 MLX90640_I2C_Driver.cpp or MLX90640_SWI2C_Driver.cpp – file containing the I2C related functions

 MLX90640_API.h – header file containing the definitions of the MLX90640 specific functions

 MLX90640_API.h – file containing the MLX90640 specific functions

The user

2. I2C driver

This is the driver for the I2C communication. The user should change this driver accordingly so that a proper
I2C with the MLX90640 is achieved. As the functions are being used by the MLX90640 API the functions
definitions should not be changed. There are two I2C drivers that could be used:

2.1. MLX90640_I2C_Driver.cpp

This file should be included if the hardware I2C in the user MCU is to be used. The user should adapt it in
order to utilize the I2C hardware module in the chosen MCU. Most MCU suppliers offer libraries with
defined functions that could be used.

2.2. MLX90640_SWI2C_Driver.cpp

This file mplements a software I2C communication using two general purpose IOs of the MCU. The user
should define the IOs (sda and scl) and ensure that the correct timing is achieved.

 Defining the IOs – I2C data pin should be defined as an InOut pin named ‘sda’,
 I2C clock pin should be defined as an Output pin names ‘scl’

 Defining the IOs levels – in order to work properly with different hardware implementations the scl
and sda levels could be defined as follows:

o #define LOW 0; - low level on the line (default ‘0’), could be ‘1’ if the line is inverted

o #define HIGH 1; - high level on the line (default ‘1’), could be ‘0’ if the line is inverted

#define SCL_HIGH scl = HIGH; - I2C clock high level definition

#define SCL_LOW scl = LOW; - I2C clock low level definition

#define SDA_HIGH sda.input(); - I2C data high level definition

MLX90640 32x24 IR array
Driver

Page 3 of 15

REVISION 1 - MARCH 23, 2018

#define SDA_LOW sda.output(); \ - I2C data low level definition

 sda = LOW;

The ‘sda’ pin is being switched to input for high level and to output for low level in order to
allow proper work for devices that do not support open drain on the pins. This approach
mimics open drain behaviour. If the device supports open drain, the definitions to set the sda
line low and /or high could be changed.

 Setting the I2C frequency – as this is a software implementation of the I2C, the instruction cycle and
the MCU clock affect the code execution. Therefore, in order to have the correct speed the user
should modify the code so that the ‘scl’ generated when the MLX90640 is transmitting data is with
the desired frequency. The default implementation of the wait function is:

void Wait(int freqCnt)

{

 int cnt;

 for(int i = 0;i<freqCnt;i++)

 {

 cnt = cnt++;

 }

}

The Wait function could be modified in order to better trim the frequency. For coarse setting of the
frequency (or dynamic frequency change) using the dedicated function, ‘freqCnt’ argument should be
changed – lower value results in higher frequency.

2.3. I2C driver functions

The I2C driver has four main functions that ensure the proper communication between the user MCU and
the MLX90640. Those functions might need some modifications by the user. However, it is important to
keep the same function definitions.

2.3.1. void MLX90640_I2CInit(void)

This function should be used to initialize the I2C lines (sda and scl) and the I2C hardware module if needed.
The initial state of the I2C lines should be high. The default implementation in the I2C driver is sending a
stop condition.

Example:

1. The initialization of the I2C should be done in the beginning of the program in order to ensure proper
communication

MLX90640 32x24 IR array
Driver

Page 4 of 15

REVISION 1 - MARCH 23, 2018

main.c

…definitions…

..MCU initialization

MLX90640_I2CInit();

…

…MLX90640 communication

…User code

2.3.2. void MLX90640_I2CFreqSet(int freq)

This function should be used to dynamically change the I2C frequency and/or for coarse settings. It has one
parameter of type int. This parameter is used to set the frequency for a hardware I2C module or the number
of cycles in the Wait function in the software I2C driver. When using I2C hardware module, the MCU
supplier provides library with integrated function for changing the frequency. In that case the MLX90640 I2C
driver should be changed so that it uses the library function to set the frequency. In the software I2C driver
(when using two general purpose IOs) the I2CFreqSet function sets a global variable that is being used by the
Wait function to set the number of loops. In order to set properly the frequency, the user should trim the
Wait function so that the generated I2C clock has the desired frequency when a MLX90640 device is
transmitting data.

Example:

1. Setting the I2C frequency to 1MHz for frame data read when using a hardware I2C module:

MLX90640_I2CFreqSet(1000); //in this case the library function provided by the MCU supplier

 // requires int value in KHz -> 1000KHz = 1MHz

2. Setting the I2C frequency to 400KHz for frame data read when using a software I2C implementation:

MLX90640_I2CFreqSet(20); //Depending on the instruction cycle and the clock of the MCU, 20

 //cycles in the Wait function result in 400KHz frequency of the

 //MLX90640 is transmitting data generated scl when

2.3.3. int MLX90640_I2CRead(uint8_t slaveAddr, unsigned int startAddress, unsigned int nWordsRead, uint16_t *data)

This function reads a desired number of words from a selected MLX90640 device memory starting from a
given address and stores the data in the MCU memory location defined by the user. If the returned value is
0, the communication is successful, if the value is -1, NACK occurred during the communication. The function
needs the following parameters:

MLX90640 32x24 IR array
Driver

Page 5 of 15

REVISION 1 - MARCH 23, 2018

 uint8_t slaveAddr – Slave address of the MLX90640 device (the default slave address is 0x33)

 unsigned int startAddress – First address from the MLX90640 memory to be read. The MLX90640 EEPROM is
in the address range 0x2400 to 0x273F and the MLX90640 RAM is in the address range 0x0400 to
0x073F.

 unsigned int nWordsRead – Number of words to be read from the MLX90640 memory

 uint16_t *data – pointer to the MCU memory location where the user wants the data to be stored

Example:

1. Reading a single EEPORM value – MLX90640 settings for a MLX90640 device with slave address 0x33:

uint16_t eeValue;

I2CReadMLX90640(0x33, 0x240C, 1, &eeValue); //the EEPROM 0x240C cell value is stored in eeValue

2. Reading a whole frame data for a MLX90640 devices with slave address 0x33:

static uint16_t frameData[832];

 I2CReadMLX90640(0x33, 0x0400, 832, frameData); //the frame data is stored in the frameData array

2.3.4. int I2CWriteMLX90640(uint8_t slaveAddr, unsigned int writeAddress, uint16_t data)

This function writes a 16-bit value to a desired memory address of a selected MLX90640 device. The function
reads back the data after the write operation is done and returns 0 if the write was successful, -1 if NACK
occurred during the communication and -2 if the data in the memory is not the same as the intended one.
The following parameters are needed:

 uint8_t slaveAddr – Slave address of the MLX90640 device (the default slave address is 0x33)

 unsigned int writeAddress – The MLX90640 memory address to write data to

 uint16_t data - Data to be written in the MLX90640 memory address

Example:

1. Writing settings – MLX90640 settings for a MLX90640 device with slave address 0x33:

int status;

status = I2CWriteMLX90640(0x33, 0x800D, 0x0901); //the desired settings are written to address 0x800D

 Variable status is 0 if the write was successful.

MLX90640 32x24 IR array
Driver

Page 6 of 15

REVISION 1 - MARCH 23, 2018

3. MLX90640 API

This is the driver for the MLX90640 device. The user should not change this driver.

3.1. MLX90640 API functions

3.1.1. int MLX90640_SetResolution(uint8_t slaveAddr, uint8_t resolution)

This function writes the desired resolution value (0x00 to 0x03) in the appropriate register in order to
change the current resolution of a MLX90640 device with a given slave address. Note that after power-on
reset, the resolution will revert back to the resolution stored in the EEPROM. The return value is 0 if the
write was successful, -1 if NACK occurred during the communication and -2 if the written value is not the
same as the intended one.

 uint8_t slaveAddr – Slave address of the MLX90640 device (the default slave address is 0x33)

 uint8_t resolution – The current resolution of MLX90640

o 0x00 – 16-bit resolution

o 0x01 – 17-bit resolution

o 0x02 – 18-bit resolution

o 0x03 – 19-bit resolution

Example:

1. Setting MLX90640 device at slave address 0x33 to work with 19-bit resolution:

Int status;

status = MLX90640_SetResolution(0x33,0x03);

3.1.2. int MLX90640_GetCurResolution (uint8_t slaveAddr)

This function returns the current resolution of a MLX90640 device with a given slave address. Note that the
current resolution might differ from the one set in the EEPROM of that device. If the result is -1, NACK
occurred during the communication and this is not a valid resolution data.

 uint8_t slaveAddr – Slave address of the MLX90640 device (the default slave address is 0x33)

Example:

1. Getting the current resolution from a MLX90640 device at slave address 0x33 that works with 19-bit
resolution, but has in the EEPROM programmed 16-bit resolution:

int curResolution;

MLX90640 32x24 IR array
Driver

Page 7 of 15

REVISION 1 - MARCH 23, 2018

curResolution = MLX90640_GetResolution(0x33); //curResolution = 0x03(19-bit) as this is the actual

 //resolution the device is working with

If(curResolution > 3) error_handling(); //error occurred during writing

3.1.3. int MLX90640_SetRefreshRate (uint8_t slaveAddr, uint8_t resolution)

This function writes the desired refresh rate value (0x00 to 0x07) in the appropriate register in order to
change the current refresh rate of a MLX90640 device with a given slave address. Note that after power -on
reset, the refresh rate will revert back to the refresh rate stored in the EEPROM. The return value is 0 if the
write was successful, -1 if NACK occurred during the communication and -2 if the written value is not the
same as the intended one.

 uint8_t slaveAddr – Slave address of the MLX90640 device (the default slave address is 0x33)

 uint8_t resolution – The current resolution of MLX90640 device

o 0x00 – 0.5Hz

o 0x01 – 1Hz

o 0x02 – 2Hz

o 0x03 – 4Hz

o 0x04 – 8Hz

o 0x05 – 16Hz

o 0x06 – 32Hz

o 0x07 – 64Hz

Example:

1. Setting MLX90640 device at slave address 0x33 to work with 16Hz refresh rate:

int status;

status = MLX90640_SetRefreshRate (0x33,0x05);

3.1.4. int MLX90640_GetRefreshRate (uint8_t slaveAddr)

This function returns the current refresh rate of a MLX90640 device with a given slave address. Note that
the current refresh rate might differ from the one set in the EEPROM of that device. If the result is -1, NACK
occurred during the communication and this is not a valid refresh rate data.

MLX90640 32x24 IR array
Driver

Page 8 of 15

REVISION 1 - MARCH 23, 2018

 uint8_t slaveAddr – Slave address of the MLX90640 device (the default slave address is 0x33)

Example:

1. Getting the current refresh rate from a MLX90640 device at slave address 0x33 that works with 16Hz
resolution, but has in the EEPROM programmed 0.5Hz refresh rate:

int curRR;

curRR = MLX90640_GetRefreshRate (0x33); // curRR = 0x05(16Hz) as this is the actual

 //refresh rate the device is working with

If(curRR>3) error_handling(); //error occurred during writing

3.1.5. int MLX90640_GetSubPageNumber (uint16_t *frameData)

This function returns the sub-page for a selected frame data of a MLX90640 device.

 uint16_t *frameData – pointer to the MLX90640 frame data that is already acquired

Example:

1. Getting the sub-page for a selected frame data of a MLX90640 device:

static int mlx90640Frame[834];

int subPage;

subPage = MLX90640_GetSubPageNumber(mlx90640Frame); // subPage = 1 as this is the actual

 //sub-page number for that frame

3.1.6. int MLX90640_SetInterleavedMode (uint8_t slaveAddr)

This function sets to interleaved mode a MLX90640 device with a given slave address. Note that after power -
on reset, the mode will revert back to the one stored in the EEPROM. The return value is 0 if the write was
successful, -1 if NACK occurred during the communication and -2 if the written value is not the same as the
intended one.

 uint8_t slaveAddr – Slave address of the MLX90640 device (the default slave address is 0x33)

Example:

1. Setting MLX90640 device at slave address 0x33 to work in interleaved mode:

int status;

status = MLX90640_SetInterleavedMode (0x33);

MLX90640 32x24 IR array
Driver

Page 9 of 15

REVISION 1 - MARCH 23, 2018

3.1.7. int MLX90640_SetChessMode (uint8_t slaveAddr)

This function sets to chess pattern mode a MLX90640 device with a given slave address. Note that after
power-on reset, the mode will revert back to the one stored in the EEPROM. The return value is 0 if the
write was successful, -1 if NACK occurred during the communication and -2 if the written value is not the
same as the intended one.

 uint8_t slaveAddr – Slave address of the MLX90640 device (the default slave address is 0x33)

Example:

1. Setting MLX90640 device at slave address 0x33 to work in chess pattern mode:

int status;

status = MLX90640_SetChessMode (0x33);

3.1.8. int MLX90640_GetCurMode (uint8_t slaveAddr)

This function returns the working mode of a MLX90640 device.

 uint8_t slaveAddr – Slave address of the MLX90640 device (the default slave address is 0x33)

Example:

1. Getting the working mode of a MLX90640 device with slave address 0x33:

int mode;

mode = MLX90640_GetCurMode(0x33); // mode = 0 if interleaved mode is set

 // mode = 1 if chess pattern mode is set

3.1.9. int MLX90640_DumpEE(uint8_t slaveAddr, uint16_t *eeData)

This function reads all the necessary EEPROM data from a MLX90640 device with a given slave address into a
MCU memory location defined by the user. The allocated memory should be at least 832 words for proper
operation. If the result is -1, NACK occurred during the communication and this is not a valid EEPROM data.

 uint8_t slaveAddr – Slave address of the MLX90640 device (the default slave address is 0x33)

 uint16_t *eeData – pointer to the MCU memory location where the user wants the EEPROM data to be stored

Example:

1. Dump the EEPORM of a MLX90640 device with slave address 0x33:

MLX90640 32x24 IR array
Driver

Page 10 of 15

REVISION 1 - MARCH 23, 2018

static uint16_t eeMLX90640[832];

int status;

status = MLX90640_DumpEE (0x33, eeMLX90640); //the whole EEPROM is stored in the eeMLX90640 array

3.1.10. int ExtractParameters(uint16_t * eeData, paramsMLX90640 *mlx90640)

This function extracts the parameters from a given EEPROM data array and stores values as type defined in
MLX90640_API.h. After the parameters are extracted, the EEPROM data is not needed anymore and the
memory it was stored in could be reused.

 uint16_t * eeData – pointer to the array that contains the EEPROM from which to extract the parameters

 paramsMLX90640 *mlx90640 – pointer to a variable of type paramsMLX90640 in which to store the extracted
parameters. Note that if multiple MLX90640 devices are on the line, an array of type paramsMLX90640 could
be used

Example:

1. Extract the parameters from the EEPORM of a MLX90640 device:

unsigned char slaveAddress;

static uint16_t eeMLX90640[832];

paramsMLX90640 mlx90640;

int status;

MLX90640_DumpEE (slaveAddress, eeMLX90640);

 MLX90640_ExtractParameters(eeMLX90640, &mlx90640); //The parameters are extracted from the

 // EEPROM data stored in eeMLX90640

// array and are stored in mlx90640 variable

//of type paramsMLX90640

3.1.11. int MLX90640_GetFrameData(uint8_t slaveAddr, uint16_t *frameData)

This function reads all the necessary frame data from a MLX90640 device with a given slave address into a
MCU memory location defined by the user. The allocated memory should be at least 834 words for proper
operation. If the result is -1, NACK occurred during the communication and this is not a valid EEPROM data,
else if the result is -8, the data could not be acquired for a certain time – the most probable reason is that
the I2C frequency is too low, else the result is the sub-page of the acquired data.

 uint8_t slaveAddr – Slave address of the MLX90640 device (the default slave address is 0x33)

MLX90640 32x24 IR array
Driver

Page 11 of 15

REVISION 1 - MARCH 23, 2018

 uint16_t *frameData – pointer to the MCU memory location where the user wants the frame data to be stored

Example:

1. Dump the EEPORM of a MLX90640 device with slave address 0x33:

static uint16_t mlx90640Frame[834];

int status;

status = MLX90640_GetFrameData (0x33, mlx90640Frame); //the whole frame data is stored in the

// mlx90640Frame array

3.1.12. float MLX90640_GetVdd(uint16_t *frameData, paramsMLX90640 *params)

This function returns the current Vdd from a given MLX90640 frame data and extracted parameters . The
result is a float number.

 uint16_t *frameData – pointer to the MLX90640 frame data that is already acquired

 paramsMLX90640 *params – pointer to the MCU memory location where the already extracted parameters
for the MLX90640 device are stored

Example:

1. Get the Vdd of a MLX90640 device with supply voltage 3.3V:

float vdd;

unsigned char slaveAddress;

static int eeMLX90640[832];

static int mlx90640Frame[834];

paramsMLX90640 mlx90640;

MLX90640_DumpEE (slaveAddress, eeMLX90640);

MLX90640_ExtractParameters(eeMLX90640,mlx90640);

MLX90640_GetFrameData (0x33, mlx90640Frame);

vdd = GetVddMLX90640(mlx90640Frame, &mlx90640); //vdd = 3.3

MLX90640 32x24 IR array
Driver

Page 12 of 15

REVISION 1 - MARCH 23, 2018

3.1.13. float MLX90640_GetTa(uint16_t *frameData, paramsMLX90640 *params)

This function returns the current Ta measured in a given MLX90640 frame data and extracted parameters.
The result is a float number.

 uint16_t *frameData – pointer to the MLX90640 frame data that is already acquired

 paramsMLX90640 *params – pointer to the MCU memory location where the already extracted parameters
for the MLX90640 device are stored

Example:

1. Get the Ta of a MLX90640 device that measured 27.18°C ambient temperature:

float Ta;

unsigned char slaveAddress;

static int eeMLX90640[832];

static int mlx90640Frame[834];

paramsMLX90640 mlx90640;

MLX90640_DumpEE (slaveAddress, eeMLX90640);

MLX90640_ExtractParameters(eeMLX90640,mlx90640);

MLX90640_GetFrameData (0x33, mlx90640Frame);

Ta = MLX90640_GetTa (mlx90640Frame, &mlx90640); //Ta = 27.18

3.1.14. void MLX90640_CalculateTo(uint16_t *frameData, paramsMLX90640 *params, float emissivity, float tr, float *result)

This function calculates the object temperatures for all 768 pixel in the frame all based on the frame data
read from a MLX90640 device, the extracted parameters for that particular device and the emissivity defined
by the user. The allocated memory should be at least 768 words for proper operation.

 uint16_t *frameData – pointer to the MCU memory location where the user wants the frame data to be stored

 paramsMLX90640 *params – pointer to the MCU memory location where the already extracted parameters
for the MLX90640 device are stored

 float emissivity – emissivity defined by the user. The emissivity is a property of the measured object

 float tr – reflected temperature defined by the user. If the object emissivity is less than 1, there might be some
temperature reflected from the object. In order for this to be compensated the user should input this
reflected temperature. The sensor ambient temperature could be used, but some shift depending on the
enclosure might be needed. For a MLX90640 in the open air the shift is -8°C.

MLX90640 32x24 IR array
Driver

Page 13 of 15

REVISION 1 - MARCH 23, 2018

 float *result – pointer to the MCU memory location where the user wants the object temperaures data to be
stored

Example:

1. Calculate the object temperatures for all the pixels in a frame, object emissivity is 0.95 and the
reflected temperature is 23.15°C (measured by the user):

float emissivity = 0.95;

float tr;

unsigned char slaveAddress;

static uint16_t eeMLX90640[832];

static uint16_t mlx90640Frame[834];

paramsMLX90640 mlx90640;

static float mlx90640To[768];

MLX90640_DumpEE (slaveAddress, eeMLX90640);

MLX90640_ExtractParameters(eeMLX90640,mlx90640);

MLX90640_GetFrameData (0x33, mlx90640Frame);

tr = 23.15;

MLX90640_CalculateTo(mlx90640Frame, &mlx90640, emissivity, tr, mlx90640To); //The object temperatures

 //for all 768 pixels in a

 //frame are stored in the

 //mlx90640To array

2. Calculate the object temperatures for all the pixels in a frame, object emissivity is 0.95 and the
reflected temperature is the sensor ambient temperature:

#define TA_SHIFT 8 //the default shift for a MLX90640 device in open air

float emissivity = 0.95;

float tr;

unsigned char slaveAddress;

static uint16_t eeMLX90640[832];

static uint16_t mlx90640Frame[834];

MLX90640 32x24 IR array
Driver

Page 14 of 15

REVISION 1 - MARCH 23, 2018

paramsMLX90640 mlx90640;

static float mlx90640To[768];

MLX90640_DumpEE (slaveAddress, eeMLX90640);

MLX90640_ExtractParameters(eeMLX90640,mlx90640);

MLX90640_GetFrameData (0x33, mlx90640Frame);

tr = MLX90640_GetTa(mlx90640Frame, &mlx90640) – TA_SHIFT; //reflected temperature based on the sensor
//ambient temperature

MLX90640_CalculateTo(mlx90640Frame, &mlx90640, emissivity, tr, mlx90640To); //The object temperatures

 //for all 768 pixels in a

 //frame are stored in the

 //mlx90640To array

3.1.15. void MLX90640_GetImage(uint16_t *frameData, paramsMLX90640 *params, float *result) – UNDER DEVELOPMENT

This function calculates values for all 768 pixels in the frame all based on the frame data read from a
MLX90640 device and the extracted parameters for that particular device. The allocated memory should be
at least 768 words for proper operation. The smaller the value, the lower the temperature in the pixels field
of view. Note that these are signed values.

 uint16_t *frameData – pointer to the MCU memory location where the user wants the frame data to be stored

 paramsMLX90640 *params – pointer to the MCU memory location where the already extracted parameters
for the MLX90640 device are stored

 float *result – pointer to the MCU memory location where the user wants the object temperaures data to be
stored

Example:

1. Get an image for a frame:

unsigned char slaveAddress;

static uint16_t eeMLX90640[832];

static uint16_t mlx90640Frame[834];

paramsMLX90640 mlx90640;

static float mlx90640Image[768];

MLX90640_DumpEE (slaveAddress, eeMLX90640);

MLX90640 32x24 IR array
Driver

Page 15 of 15

REVISION 1 - MARCH 23, 2018

MLX90640_ExtractParameters(eeMLX90640,mlx90640);

MLX90640_GetFrameData (0x33, mlx90640Frame);

MLX90640_GetImage(mlx90640Frame, &mlx90640, emissivity, tr, mlx90640Image); //The image from the

 //frame data is extracted

 //and is stored in the

 //mlx90640Image array

4. Revision history table

02/03/2018 Initial release

Table 1

